| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Editor’s Note: With the move toward Universal Health Care in the United States, there is a growing interest in the economic impact of various reimbursement policies. The economic impact of various decision models is studied next.. Teaching Healthcare Reimbursement Systems Using System Dynamics ModelsMichael H. KennedyUSAAbstractMethods for reimbursing healthcare providers and facilities are frequently taught in courses addressing healthcare finance. Unfortunately, defining the method of reimbursement and illustrating solutions to various problems incorporating these reimbursement methodologies often fail to convey the dynamic nature of payment systems or to set the context for informed decision-making. System dynamics software provides an appropriate medium for demonstrating the flow of funds associated with healthcare reimbursement and for illustrating the impact of typical management decisions. Three reimbursement methods are modeled generically: cost-based reimbursement, prospective payment, and capitation. Keywords: Finance, health care, payment systems, system dynamics IntroductionFinancing healthcare in the United States is not a static enterprise. Getzen (2007) uses a “flow of funds” approach to characterize the dynamic nature of financial transactions. Premiums and tax dollars flow from the patient and public to insurers and the government, and reimbursement dollars flow from insurers and the government to hospitals and doctors. Methods for reimbursing healthcare providers and facilities are frequently taught in courses addressing healthcare finance. Unfortunately, defining the method of reimbursement and illustrating solutions to various problems incorporating these reimbursement methodologies often fails to convey the dynamic nature of payment systems or to set the context for informed decision-making. System dynamics software provides an appropriate medium for demonstrating the flow of funds associated with healthcare reimbursement and for illustrating the impact of typical management decisions. Three reimbursement methods are modeled generically: cost-based reimbursement, prospective payment, and capitation. Cost-based reimbursement results in a payment to the provider based upon the cost of the resources consumed to provide care. Until the advent of prospective payment systems in the United States in the early 1980s, hospitals were paid by Medicare and other payers on the basis of reasonable costs (Cleverley and Cameron, 2007; Gapenski, 2005). Shi and Singh (2008) note that Medicare actually paid in excess of costs (“cost-plus”) because a percentage of capital costs were factored with operating costs into a formula used to compute a per diem reimbursement rate. Neumann, et al. (1993) report that hospitals were paid reimbursable costs plus 2% from 1966 until 1970. Cost-based reimbursement is a form of retrospective reimbursement – the amount to be paid to the provider is determined after the service is rendered. The system dynamics model explicitly demonstrates why cost-based reimbursement (especially cost-plus) has fallen out of favor as a reimbursement method. Prospective payment methods determine the amount to be paid to the provider before the service is rendered (Gapenski, 2005). Diagnosis-Related Groups were introduced in 1983 as the method succeeding cost-based reimbursement to pay hospitals for Medicare inpatients in the United States. Diagnoses coded from the International Classification of Diseases, 9th Edition, Clinical Modification are currently assigned to 700+ MS-DRGs grouped by 25 major diagnostic categories (Cleverley and Cameron, 2007). Other prospective payment methods have been subsequently adopted to include Ambulatory Payment Classification (APC) for outpatients and Resource Utilization Groups now in version 3 (RUG-III) for skilled nursing facilities (Castro and Layman, 2006). Capitation represents a method to pay providers that is usually associated with managed care organizations in the United States. The provider agrees to provide a menu of services to the managed care organization’s enrolled members in exchange for a prospective payment of x dollars per member per month [PMPM] (Cleverley and Cameron, 2007; Gapenski, 2005; Shi and Singh, 2008). Explanation of Reimbursement ModelsiThink® software was used to create the three generic healthcare reimbursement models: Model 1 – Cost-Plus Reimbursement, Model 2 – Prospective Payment, and Model 3 – Capitation. The models are a variation of cost-volume-profit analysis based upon the profit equation: Profit = Revenue – Costs. Model 1 – Cost-Plus ReimbursementModel 1, the Cost-Plus Reimbursement Model, is used to introduce system dynamics modeling. Figure 1 provides the model’s schematic. Figure 1. Cost-Plus Reimbursement ModelIn this model, patient admissions to the hospital drive reimbursement. The flow admitting is initialized at 100 patients per month and patient admissions are recorded in the stock Patients. The unit cost per admission is initialized at $500 as represented by the converter unit cost. Costs accumulate at a rate of admitting times unit cost [100 patients per month x $500 per patient = $50,000 per month] as captured by the flow accumulating. Patient costs are recorded in the stock Costs. Revenue is generated by the recovery of costs plus 2% as represented by the converter cost plus conversion initialized at 1.02. Therefore, revenue builds at a rate of accumulating x cost plus conversion [$50,000 per month x 1.02 = $51,000 per month] as captured by the flow generating. Cumulative revenues are recorded in the stock Revenue. Profits represent revenues minus costs, so the profit rate is represented by the flow profiting whose formula is generating minus accumulating [$51,000 - $50,000]. As initialized, the profit rate is $1,000 per month, so that annual profits are $12,000 Model 2 – Prospective PaymentProspective payment methods establish payments in advance of treatment. Figure 2 provides the schematic for Model 2, Prospective Payment. Figure 2. Prospective Payment ModelThe stocks and flows representing patient admissions and the accumulation of costs are the same for Model 2 as Model 1. Revenues are generated differently. The revenue generated by each admission is established prospectively as captured by the converter unit revenue. In order to produce the same initial profits, the prospective payment for each patient admitted is set by initializing the converter unit revenue to $510. Therefore revenue builds at a rate of admitting x unit revenue [100 patients admitted per month x $510 per patient admitted = $51,000 per month] as captured by the flow generating. Model 2 represents a simplification of real-world prospective payment models. The prospective payment of $510 can either be thought of as one diagnosis (rather than many diagnoses represented by 700+ MS-DRGs) or thought of as the diagnostic case-mix represented by an average prospective payment. Either way, the basic incentives associated with prospective payment remain the same. Cumulative revenues are recorded in the stock Revenue. Profits represent revenues minus costs, so the profit rate is once again represented by the flow profiting whose formula is generating minus accumulating [$51,000 - $50,000]. As the model is initialized, the profit rate is $1,000 per month, so that annual profits are $12,000. Model 3 – CapitationModeling capitation rates is somewhat more complex. Figure 3 provides the schematic for Model 3, Capitation. Unlike cost-plus reimbursement and prospective payment, patient admissions to the hospital do not drive reimbursement, but they do determine costs. Capitation involves up-front reimbursement of the provider at an established dollar per member per month ($PMPM) rate multiplied by the number of enrolled beneficiaries which are recorded by the converters $pmpm and covered lives, respectively. The converter covered lives is initialized at 30,000 members, and the value for the converter $pmpm is set at $1.70 per member per month. Therefore revenue builds at a rate of $pmpm x covered lives [$1.70 per member per month x 30,000 members = $51,000 per month] as captured by the flow generating. Cumulative revenues are recorded in the stock Revenue. Monthly admission rates under capitation depend upon covered lives, the annual service rate, and a monthly conversion factor as denoted by the converters covered lives, annual service rate, and monthly conversion, respectively. Annual service rate is established at 40 admissions per 1000 members per year, and monthly conversion is established as 1 year per 12 months. Therefore admissions build at a rate of covered lives x annual service rate x monthly conversion [30,000 members x 40 admissions per 1000 members per year x 1 year per 12 months = 100 admissions per month] as captured by the flow admitting. The stocks and flows representing the accumulation of costs are the same for Model 3 as Models 1 and 2. Figure 3. Capitation ModelProfits represent revenues minus costs, so the profit rate is once again represented by the flow profiting whose formula is generating minus accumulating [$51,000 - $50,000]. As initialized, the profit rate is $1,000 per month, so that annual profits are $12,000. Student/Model InteractionThe model interface is a “flight simulator” that allows the instructor or student to modify the value of selected model variables For Models 1 and 2, a slider can modify the converter unit cost within a range of $400 to $600 by increments of $10. Similarly, a slider can be used to modify the converter admitting within a range of 75 to 125 admissions by increments of one. A similar approach is taken for Model 3 except that a slider can be used to modify the values for the converter annual service rate within a range of 30 admissions per 1000 covered lives to 60 admissions per 1000 covered lives by increments of 10 which produces the same range of admissions from 75 to 125 as Models 1 and 2. Model 3 is more complex than Models 1 and 2. Covered lives and $PMPM are part of the negotiated contract and are beyond the immediate scope of decision-makers who may be able to influence unit costs and admissions. Modifying these variables involves a second stage of decision-making, but sliders are included in the model interface to modify the converter covered lives within a range of 22,500 to 37,500 covered lives by increments of 100 lives and to modify the converter $pmpm within a range of $1.50 to $1.90 per member per month by increments of $0.10. To begin model execution, the student is read a short narrative describing the reimbursement method incorporated into that model followed by a challenge to modify sliders one at a time to produce a configuration that maximizes profits. The student interacts with the model in one of two ways. The first form of interaction involves the instructor running each model as initialized and then seeking input about whether to increase or decrease the value of the sliders on subsequent runs. The second form of interaction occurs with the student operating the software independently, but with the instructor standing by. Each run result is posted to a comparative graph and a comparative table. Table 1Run Results
Observation and ConclusionsTypical model runs have followed the pattern recorded by Table 1. The initial model explored is Model 1, Cost-Plus Reimbursement. Run 1 proceeds at initialized values which produce an annual profit of $12,000. Students are typically conditioned by the contemporary fiscal environment to reduce unit costs and run the model again. Cutting unit costs to $400 for Run 2 produces a counterintuitive result; rather than increasing profits, a reduced profit of $9,600 is produced. This result generally stimulates a class discussion which produces the insight that since unit revenue in this model is always 2% greater than unit costs, increasing, not reducing, costs is the optimal strategy. Run 3 illustrates the result of simultaneously decreasing unit costs and admissions which produces the lowest profit of $7,200. Run 4 illustrates the result of simultaneously increasing unit costs and admissions which produces the greatest profit of $18,000. Figure 4 illustrates the model interface for Model 1 with sliders for unit cost and admitting and a comparative graph displaying the results of Runs 1 - 4. Figure 4. Model interface demonstrating typical runs for | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
go top | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
May 2009 Index | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Home Page |