The Editors thank The College Quarterly, A Journal of Research and Discussion for College Educators Across Canada, for permission to republish this article. The original article - Communication Technology, Student Learning, and Diffusion of Innovation - is available on the following site: Adoption of a Course Management System at a College Campus: |
Relative Advantage |
A1: “ANGEL contributes to the quality of teaching.” (M = 2.51, SD = .88) |
A2: “Using ANGEL saves time.” (M = 2.47, SD = .93) |
A3: “ANGEL is a positive innovation.” (M = 2.96, SD = .73) |
A4: “ANGEL makes it more convenient to communicate with my professors.” (M = 2.83, SD = 1.01) |
|
Compatibility |
P1: “ANGEL is compatible with the way I like to work.” (M = 2.54, SD = .94) |
P2: “Using ANGEL would require me to change my work habits.” (M = 2.48, SD = 1.00) |
P3: “ANGEL is compatible with the computer system I use at home/in my dorm room.” (M = 1.81, SD = .90) |
|
Simplicity |
X1: “ANGEL is easy to use.” (M = 3.22, SD = .72) |
X2: “I am confident in my ability to use ANGEL.” (M = 3.46, SD = .60) |
X3: “ANGEL is too complex for me.” (M = 3.43, SD = .72) |
X4: “ANGEL is user-friendly.” (M = 3.07, SD = .78) |
|
Trialability |
T1: “I can practice using ANGEL at a comfortable pace.” (M = 2.73, SD = .82) |
T2: “ANGEL can be easily tried out.” (M = 2.86, SD = .81) |
T3: “I am not worried about making mistakes, i.e. clicking on the wrong item, when I use ANGEL.” (M = 2.92, SD = 1.06) |
|
Motivation |
M1: “I hand in my assignment on time most of the time.” (M = 3.45, SD = .81) |
M2: “I do not miss classes without a good reason.” (M = 2.53, SD = 1.29) |
M3: “I am a self-motivated learner.” (M = 2.64, SD = .95) |
|
Learning Style |
Y1: “I can comprehend course material better after I listen to the instructor’s lecture.” (M = 3.40, SD = .83) |
Y2: “I rely on the instructor’s guidance in mastering the course material.” (M = 2.72, SD = .94) |
Y3: “I learn better with step-by-step demonstration.” (M = 2.55, SD = .95) |
|
Instructor’s Requirement |
R1: “I use ANGEL because my professors post course materials on ANGEL.” (M = 3.34, SD = .84) |
R2: “I use ANGEL because my professors require me to do so.” (M = 2.90, SD = .96) |
|
Informed about technology |
F1: “How informed do you think you are about new scientific discoveries?" (M = 2.75, SD = .96) |
F2: “How informed do you think you are about the use of new technological inventions?” (M = 2.71, SD = .89) |
F3: “How often do you use the media for information on new technological inventions?” (M = 2.07, SD = .94) |
F4: “How often do you use the Internet to gain information on new technological inventions?” (M = 2.04, SD = 1.04) |
|
Interest in technology |
N1: “How interested are you in new scientific discoveries?” (M = 2.43, SD = .95) |
N2: “How interested are you in the use of new inventions and technologies?” (M = 2.44, SD = .88) |
|
Computer Skills |
S1: “I am pretty good with the computer.” (M = 3.17, SD = .79) |
S2: “I am knowledgeable about computer hardware.” (M = 2.59, SD = 1.01) |
S3: “I am knowledgeable about computer software.” (M = 2.75, SD = .89) |
|
Initiate discussion on technology |
D1: “How often do you initiate a discussion on new technological inventions?” (M = 3.49, SD = 1.12) |
Compatibility. Compatibility is the degree to which an innovation is perceived as being consistent with the existing values, past experiences and practices, and needs of adopters (Rogers, 1995). This second component of Rogers’ model was assessed by whether the adoption of the course management system would require the participants to change their work habits and whether the course management system was compatible with their computer system at home or in their dorm room.
Simplicity. According to Rogers (1995), complexity is the degree to which an innovation is perceived as difficult to understand and use. Innovation that is easy to use will more likely to be adopted and will be adopted faster. The term “complexity” in Rogers’ model actually pertains to whether it is simple to use the innovation. As a result, simplicity will be measured in this study. Items included, “ANGEL is easy to use,” “ANGEL is user-friendly,” “ANGEL is too complex for me,” and “I am confident in my ability to use ANGEL.”
Trialability. Trialability pertains to the degree to which an innovation may be experimented with on a limited basis (Rogers, 1995). Trialability was assessed by the degree to which the course management system could be easily tried out by participants. Items included, “I can practice using ANGEL at a comfortable pace,” “ANGEL can be easily tried out,” and “I am not worried about making mistakes, i.e. clicking on the wrong item, when I use ANGEL.”
There are three learning related variables investigated in this study: student motivation, student learning style, and adoption out of requirement from the instructors.
Student motivation. Whether participants were motivated learners was assessed by questions pertaining to whether they handed in their assignment on time, kept good attendance, and whether they thought they were self-motivated learners.
Learning style. Three learning styles were investigated: visual, aural, and dependent, to examine how the information technology benefited different types of learners. Items included, respectively, “I learn better with step-by-step demonstration,” “I can comprehend course material better after I listen to the instructor’s lecture,” and “I rely on the instructor’s guidance in mastering the course material.”
Instructors’ requirement. The frequency of the use of the information technology was also hypothesized to be affected by whether the instructors required students to go online to get assignments, take quizzes, or submit homework. Questions that assessed the reasons for the use of the technology were asked, “I use ANGEL because my professors post course materials on ANGEL,” and “I use ANGEL because my professors require me to do so.”
Four technology related questions were also administered. The four variables examined were: computer skills, informed about technology, interested in technology, and whether participants initiated discussion on technology.
Computer skills. In order to assess whether students who were less competent on the use of computer hardware and software would benefit less from the technology, self-report questions on computer skills were included, “I am pretty good with the computer,” “I am knowledgeable about computer hardware,” and “I am knowledgeable about computer software.”
Informed about technology. To assess whether participants were informed about technology, participants were asked whether they thought they were informed about new scientific discoveries, and the use of new technological inventions. Questions on participants’ information seeking behaviors regarding new technological inventions were also included.
Interest in technology. To investigate whether participants’ interest in technology would affect the adoption and the use of the learning technology, questions on whether participants were interested in new scientific discoveries and in the use of new inventions and technologies were administered.
Technological discussion initiation. One question was administered to assess this variable: “How often do you initiate a discussion on new technological inventions?” This question was answered on a 5-point Likert scale.
Frequency of Usage |
Interaction |
Learning |
Note: All questions were coded on 5-point Likert scales
with 5 coded as “Strongly agree” and 1 as “Strongly disagree.”
The three dependent variables were measured as follows:
Adoption of the innovation. The adoption of ANGEL was measured by asking students how often they use ANGEL. Do they use ANGEL “a few times a day,” “a few times a week,” “once a week,” “once in a while,” or “rarely”?
Interaction. Interaction between students, instructors, and course materials was measured by asking participants whether they “strongly agree,” “agree,” “neutral,” “disagree,” or “strongly disagree” with the following statements: “ANGEL increases my interaction with my instructors,” “ANGEL increases my interaction with course material,” and “ANGEL increases my interaction with my fellow students.”
Learning. Learning was assessed by asking participants whether they learned the course material better because of the technology and whether they believed that the course management system improved their grade.
Two explanatory factor analyses were conducted to assess the reliability and validity of this investigation. For the first factor analysis, all innovation variables and learning related variables were entered with Direct Oblimin rotation. Results are shown in Table 2. This factor analysis indicates that among the four components in Rogers’ model, relative advantage and compatibility emerged as one factor. In addition, two of the three compatibility measures (P1 and P3 in Table 1) did not cluster with the rest of the relative advantage measures and were dropped, the one compatibility measure that clustered with the advantage measures (P2) was moved to the advantage factor. Visual learning style (Y3 in Table 1) did not cluster with the rest of the learning style variables and was dropped. The rest of the two learning style measures were labeled as dependent learning styles in future analysis because both questions pertain to the dependence the participants had on the instructors to learn the materials.
Variable Factor Loading |
Trialability |
T1 .824 .049 .110 -.172 -.096 .332 |
T2 .790 .040 .119 -.345 .052 .412 |
T3 .484 -.016 -.044 -.324 .073 .363 |
|
Instructor Requirement |
R1 .097 .810 -.028 -.245 .071 .174 |
R2 -.036 .796 .021 .033 .299 -.064 |
|
Motivation |
M1 .168 .213 .766 .058 -.047 .145 |
M2 .113 -.060 .716 -.089 .217 -.019 |
M3 -.176 -.207 .679 -.290 -.079 .172 |
|
Relative Advantage/Compatibility |
A1 .151 .023 .050 -.786 .131 .242 |
A2 .040 .063 .021 -.766 -.077 .351 |
A3 .493 .108 .131 -.733 -.067 .396 |
A4 .292 .312 .068 -.710 .001 .370 |
P1 .420 .016 .267 -.678 -.128 .305 |
|
Dependent Learning Style |
Y1 .003 .109 .038 .033 .810 .003 |
Y2 .023 .223 .057 -.033 .763 -.053 |
|
Simplicity |
X1 .420 .110 .241 -.358 -.090 .807 |
X2 .362 -.012 .161 -.341 .024 .787 |
X3 .136 .038 -.090 -.241 -.031 .770 |
X4 .473 .135 .215 -.328 -.096 .750 |
Total Variance Explained: 63.1%
The second factor analysis pertains to the technology related variables. Three factors emerged from the data: informed, computer skills, and interest. Discussion variable clustered with all the informed about technology variables and was moved to the informed factor. Results of this factor analysis are shown in Table 3.
Variable Factor Loading |
|
|
|
F2 .851 .090 .185 | |
F4 .791 -.105 .068 | |
F1 .753 .141 .339 | |
D1 .722 -.006 .002 | |
F3 .647 -.070 .303 | |
| |
S3 -.002 .898 -.007 | |
S2 -.021 .874 -.063 | |
S1 .018 .843 -.055 | |
| |
N2 .166 -.114 .905 | |
N1 .214 .010 .897 |
Total Variance Explained: 62%
A series of demographic analyses were conducted to explore the effects of gender, age, and year in school on the three dependent variables. For the frequency of the use of the learning technology, the higher the grade of the respondents, the more often was the use of the technology, F(173) = 2.44, p £ .05. Gender and age did not affect how often the respondents used the technology.
None of the three demographic variables made a difference in the interaction dependent variable. In other words, in terms of respondents’ experiences on whether the course management system facilitated interaction among students, instructors, and course materials, the differences across different gender, age, and year in school groups were not significant.
For student learning, year in school was the significant factor in determining whether students thought the course management system contributed to their learning and good grades. The higher the grade of the respondents, the more likely the participant would think that the technology helped them learn the course material better and contributed to their good grades. Gender and age did not make a difference in terms of student learning.
H1: Advantageous innovation characteristics, the adoption of the innovation, interaction, and student learning.
1 2 3 4 5 6 7 8 9 10 11 12 |
Advantage/ |
Simplicity .468*** __ |
Trialability .436*** .537*** __ |
Motivation .158* .160* .086 __ |
Requirement .136 .137 .051 .013 __ |
Dependent Learning Style .001 .008 .004 .077 .242*** __ |
Informed on Technology .029 .081 .063 .052 .062 .106 __ |
Computer Skills .130 .194** .172* .009 .123 .008 .003 __ |
Interested in Technology .044 .089 .047 .112 .001 .011 .232** .069 __ |
Frequency of Usage .349***.338***.232***.248***.026 .087 .099 .02 .004 __ |
Interaction .630***.341***.277***.041 .109 .007 .026 .008 .038 .303*** __ |
Learning .552*** .243***.191** -.006 .060 .048 .019 .054 .017 .205** .639*** __ |
*≤.05, **≤.01, ***≤.001
According to Table 4, all three factors significantly correlate with the frequency of the use of the course management system (Advantage/ compatibility: r = .349, p < .000; Simplicity: r = .338, p < .000; Trialability: r = .232, p < .000). To assess which one of the three factors predicted frequency better than the other factors, a multiple regression analysis was performed.
Results in Table 5 show that when all three factors were entered simultaneously, simplicity was the best predictor of the frequency of usage (b = .28, p < .000), followed by advantages/compatibility (b = .22, p < .000). Trialability failed to explain the variance in the dependent variable when all three factors were present. This multiple regression model explains 18% of the variance in the frequency of the use of this information technology.
Predictor Variable | Frequency of Usage | Interaction | Learning | |||
| b | R2 | b | R2 | b | R2 |
Advantage/ |
| .18*** |
| .40*** |
| .30*** |
Simplicity | .28*** |
| .14 |
| .01 |
|
Trialability | -.02 |
| -.06 |
| -.07 |
|
*≤.05, **≤.01, ***≤.001
The relationship between advantageous innovation characteristics and interaction was assessed by data presented in Table 4 and Table 5. According to Table 4, all three factors significantly correlate with interaction measures, with advantage/compatibility measures stand out (Advantage/compatibility: r = .630, p < .000; Simplicity: r = .341, p < .000; Trialability: r = .277, p < .000). In other words, relative advantages and compatibility, such as saving time, convenience, and compatibility with preferred work habits, contributed the most to the increased interaction among students, instructors, and course materials. Results from multiple regression analysis in Table 5 also confirm this result. When all three factors were entered together, advantage/compatibility measures are the most robust predictors of the interaction between students, instructors, and course materials (b = .58, p < .000). Simplicity is also a significant predictor (b = .14, p < .05). Trialability failed to predict interaction when all three factors were present. The multiple regression model explains 40% of the variance in interaction measures.
Do the advantageous innovation characteristics contribute to student learning? Correlation coefficients in Table 4 indicate that all three factors contribute to student learning (Advantage/compatibility: r = .552, p < .000; Simplicity: r = .243, p < .000; Trialability: r = .191, p < .01). Advantage/compatibility is the strongest predictor of student learning. Table 5 confirms this finding. When all three factors were entered into the multiple regression equation, only advantage/compatibility measures predict student learning (b = .57, p < .000), while simplicity and trialability fail to do so. The multiple regression model explains 30% of the variance in student learning.
H2: Student characteristics and the adoption of the innovation
Two of the three hypotheses for H2 are sustained. Student motivation predicted the adoption of the innovation (r = .248, p < .000). In other words, students who were more motivated tended to use the course management system more often.
Visual, aural, and dependent learners benefit equally well from the course management system. A series of ANOVA analyses on the three learning styles generate insignificant differences in both frequency of usage and learning measures. In other words, learning styles did not make statistically significant differences in terms of how often respondents used the technology and whether they thought the technology contributed to their learning:
for visual on frequency: F(191) = .38, p > .05;
for aural on frequency: F(194) = 1.32, p > .05;
for dependent on frequency: F(191) = 1.15, p > .05;
for visual on learning: F(190) = .81, p > .05;
for aural on learning: F(193) = 1.53, p > .05;
for dependent on learning: F(190) = .86, p > .05).
Instructors’ requirements for students to go online for homework and course materials did not predict the frequency of usage (r = .048, p > .05), while student motivation did (r = .248, p < .001).
H3: Technology related attributes and the adoption of the innovation
The hypothesized moderate correlation between technology related attributes and the adoption of innovation was not found. Results of the correlation analyses are presented in Table 4. In fact, none of the technology related measures, such as informed, interested, or computer skills, significantly correlate with the frequency of the use of the course management system. This finding actually leads to an interesting conclusion. That is, the technology is so user friendly that people who do not have moderate to high level of knowledge and attentiveness to technology can use the information technology. In other words, similar to the finding that the technology benefits respondents with different learning styles equally well, this technology also benefits respondents with different levels of technological know-how equally well.
H4: The adoption of the innovation and interaction
It is hypothesized that the adoption of the information technology will facilitate interaction among students, instructors, and course materials.
This hypothesis is sustained (r = .303, p < .000).
H5: Interaction and student learning
It is further hypothesized that the increased interaction between students, instructors, and course materials will contribute to student learning. This hypothesis is sustained (r = .639, p £ .000). In fact, the correlation is quite high between interaction and student learning.
Based on the above sustained hypotheses, a path model was constructed to assess the direct and indirect effects among variables. The path model is based on data from Table 4. Independent variables that consistently generate significant correlation coefficients across the three dependent variables were entered into the path model as exogenous variables, which include advantage/compatibility, simplicity, trialability, and student motivation. Two of the dependent variables were conceptualized as mediators in the model: frequency of usage and interaction. Student learning is the final variable that the model is intended to explain. The path model is constructed using LISREL. The path diagram is depicted in Figure 1.
The goodness of fit of the path model was assessed by considering chi-square value and the root mean square error of approximation (RMSEA). According to Segrin and Nabi (2002) the goodness of a path model’s fit to the sample data can be judged using the following two criteria: (1) a c2/df ratio of 5 or less (Segrin & Nabi, 2002; Marsh & Hocevar, 1985), and (2) an RMSEA less than or equal to .08 (Segrin & Nabi, 2002; Browne & Cudeck, 1993).
This model has a c2 = 15.81, df = 5, p < .01. The c2/df ratio for this model was 3.16, indicating an acceptable fit to the sample data. The RMSEA = .11 suggests a marginally acceptable fit, indicating that there is some room for improvement in the specification of this model. Individual path coefficients suggest that simplicity predicts the frequency of usage better than other variables. This is consistent with my previous discussion. Advantage/compatibility and student motivation also predict the frequency of usage. In predicting interaction, advantage/compatibility is by far the most robust predictor compared to the other variables (b = .43). Collectively, the four exogenous variables accounted for 19% of the variance in the frequency of usage, and 41% of the variance in interaction. Finally, the path from interaction to student learning appears to be robust, b = .45. All variables in this model explain 41% of the variance in student learning.
This study sought to explain the adoption of a web-based course management system by college students using Rogers’ (1995) model of the diffusion of innovation and to assess the impact of the adoption on interaction between students, instructors, and course materials. The impact of the adoption on student learning was also examined. Results indicate that Rogers’ model successfully predicts the adoption of this innovation. All four factors in Rogers’ model predict the adoption. When advantage/compatibility, simplicity, and trialability were entered simultaneously into multiple regression analysis and path analysis, simplicity is the most robust predictor of the adoption, which was measured as the frequency of usage. In other words, the user-friendly nature of the course management system encourages respondents to use the technology often. This finding suggests that it is important for an educational technology to have user-friendly designs for it to be used by students. Complex educational technologies will be much less likely to be adopted on college campuses. In addition to simplicity, relative advantage, compatibility, and student motivation are also significant predictors of the adoption.
Rogers’ model was also used to assess the impact of technological attributes on interaction between students, instructors, and course materials. It was found that while all of the four factors in the model successfully predict interaction, the combined measure of relative advantage and compatibility is the most robust predictor of interaction. Simplicity is also a robust predictor of interaction. This finding indicates that advantageous features of the technology actually help increase the interaction between students, instructors, and course materials. The increased interaction, in turn, significantly contributes to student learning. In other words, the opportunities provided by the technology did lead to increased interaction, which directly affects student learning.
It is interesting to find out that instructors’ requirement of students using the course management system did not predict frequency of usage and learning, while advantageous features of the information technology did. One possible explanation for the lack of correlation between adoption of the technology and instructor requirement is that adoption in this study is defined as the frequency of usage instead of simply the use of the technology. Findings from this study are consistent with the results from the ECAR study (Caruso, 2004). According to the ECAR study, students reported that the biggest benefit of the use of classroom information technology is convenience, followed by class activities management, saving time, and improving learning. One additional factor specified in the ECAR study is that the majority of the students nowadays prefer to take classes that use a moderate amount of technology. In other words, the opportunity to work with information available online has become a significant aspect of a student’s college learning experience.
Among the four factors of Rogers’ model examined in this study, although trialability alone predicted the frequency of the use of the technology, interaction, and learning, when all factors were simultaneously investigated, trialability appeared to be an insignificant predictor of frequency, interaction, and learning. One possible explanation would be that when all factors were present, the portion of the dependent variable that could be accounted for by trialabililty was explained by other factors. Because adoption was measured as an on-going process and because the adoption has already taken off, when all factors were present, relative advantage, compatibility, and simplicity stand out as more robust predictors than trialability. This finding, however, does not suggest that trialability would be irrelevant in explaining the beginning stage of an adoption process with the other factors present.
Preliminary demographic analyses for this study also show that year in school successfully predicts the frequency of the use of the technology. Moreover, the higher the grade of the participants, the more likely they would think that the technology contributes to learning. In other words, the benefits of using the technology are not immediately noticeable for participants. It takes one or two years for participants to efficiently incorporate the technology into their work habits and to realize the benefits of the technology.
The other interesting and important finding from this study is that participants with different learning styles and different technological background benefit equally well from this technology. This is great news for the manufacturer of the software and a good lesson for future manufacturers of educational technologies.
Beveridge, A. A. & Rudell, F. (1988). An evaluation of “public attitudes toward science and technology” in Science Indicators. Public Opinion Quarterly, 52, 374 – 385.
Browne, M. W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models (pp. 136 – 162). Newbury Park, CA: Sage.
Caruso, J. B. (2004). ECAR study of students and information technology, 2004: Convenience, connection, and control. Retrived July 10, 2005, from http://www.educause.edu/ir/library/pdf/ecar_so/ers/ERS0405/ekf0405.pdf
Garrison, B. (2000). Diffusion of a new technology: Online research in newspaper newsrooms. Convergence 6 (1), 84 – 105.
Herling, T. J. (1996). Adoption of computer technology by communication faculty: resistance to innovation. Mass Communication Review, 23 (1 – 4).
Lim, B-R., Plucker, J. A., & Bichelmeyer, B. (2003). Learning by web design: how it affects graduate student attitudes. College Teaching, 51 (1), 13 – 20.
Marsh, H. W. & Hocevar, D. (1985). Application of confirmatory factor analysis to thre study of self-concept: First- and higher-order factor models and their invariance across groups. Psychological Bulletin, 97, 562 – 582.
Meyer, K. A. (2003). The Web’s impact on student learning: a review of recent research reveals three areas that can enlighten current online learning practices. T H E Journal (Technological Horizons In Education), 30 (10), 14 – 20.
Parikh, M. & Verma, S. (2002). Utilizing Internet technologies to support learning: an empirical analysis. International Journal of Information Management, 22 (1), 27 – 47.
Riffell, S. K. & Sibley, D. H. (2003). Learning online: student perceptions of a hybrid learning format. Journal of College Science Teaching, 32 (6), 394 – 399.
Rogers, E. M. (1995). Diffusion of Innovation. New York: The Free Press.
Ryan, B. and Gross, N. C. (1943). The diffusion of hybrid seed corn in two Iowa communities. Rural Sociology, 8, 15 – 24.
Segrin, C. & Nabi, R. L. (2002). Does television viewing cultivate unrealistic expectations about marriage? Journal of Communication, 52 (2), 247-263.
Silva, C. (2003). Creating a better learning environment through improved communication. T H E Journal (Technological Horizons In Education), 30 (11), 54 – 57.
Stocks, J. T. & Freddolino, P. P. (2000). Enhancing computer-mediated teaching through interactivity: the second iteration of a World Wide Web-based graduate social work course. Research on Social Work Practice, 10 (4), 505 – 519.
Hsiang-Ann Liao, Ph.D. is Assistant Professor in the Department of Communication at the State University of New York (SUNY) College at Brockport.
Contact Address: 9180 Lakeside, Angola, NY 14006
TEL: (585) 395 – 5772 FAX: (585) 395 – 5771
E-MAIL: aliao@brockport.edu